Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Sep 29;1468(1-2):239-52.
doi: 10.1016/s0005-2736(00)00264-9.

Efficient encapsulation of DNA plasmids in small neutral liposomes induced by ethanol and calcium

Affiliations
Free article
Comparative Study

Efficient encapsulation of DNA plasmids in small neutral liposomes induced by ethanol and calcium

A L Bailey et al. Biochim Biophys Acta. .
Free article

Abstract

Efficient encapsulation of DNA plasmids inside small, neutral liposomes composed of 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), DOPC/DOPE (1,2-dioleoyl-sn-phosphatidylethanolamine) (1:1) and DOPC/DOPE/cholesterol (1:1:1) was achieved by the addition of ethanol and calcium chloride to an aqueous mixture of small unilamellar vesicles (SUVs) and plasmid. Following dialysis against low-salt buffer, the neutral lipid complexes (NLCs) had average effective diameters less than 200 nm and encapsulated up to 80% of the DNA. Optimum Ca(2+) and ethanol concentrations for each lipid mixture were determined by statistically designed experiments and mathematical modeling of trapping efficiency. NLCs are unilamellar, have neutral surface potentials, and retain entrapped DNA at pH 4.0 and in serum at 37 degrees C. The circulation and clearance properties of the complexes following intravenous administration in mice are similar to empty neutral liposomes, and the toxicity of NLCs are expected to be significantly reduced compared to other non-viral gene-delivery systems. The NLC encapsulation method, if it can be combined with effective targeting and endosome-release technologies to achieve efficient and tissue-specific transfection, may represent an important alternative to current systemic gene therapy approaches.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources