Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Sep;39(3):215-31.
doi: 10.2165/00003088-200039030-00004.

Effects of obesity on pharmacokinetics implications for drug therapy

Affiliations
Review

Effects of obesity on pharmacokinetics implications for drug therapy

G Cheymol. Clin Pharmacokinet. 2000 Sep.

Abstract

Obesity is a worldwide problem, with major health, social and economic implications. The adaptation of drug dosages to obese patients is a subject of concern, particularly for drugs with a narrow therapeutic index. The main factors that affect the tissue distribution of drugs are body composition, regional blood flow and the affinity of the drug for plasma proteins and/or tissue components. Obese people have larger absolute lean body masses as well as fat masses than non-obese individuals of the same age, gender and height. However, the percentage of fat per kg of total bodyweight (TBW) is markedly increased, whereas that chrome P450 isoforms are altered, but no clear overview of drug hepatic metabolism in obesity is currently available. Pharmacokinetic studies provide differing data on renal function in obese patients. This review analyses recent publications on several classes of drugs: antibacterials, anticancer drugs, psychotropic drugs, anticonvulsants, general anaesthetics, opioid analgesics, neuromuscular blockers, beta-blockers and drugs commonly used in the management of obesity. Pharmacokinetic studies in obesity show that the behaviour of molecules with weak or moderate lipophilicity (e.g. lithium and vecuronium) is generally rather predictable, as these drugs are distributed mainly in lean tissues. The dosage of these drugs should be based on the ideal bodyweight (IBW). However, some of these drugs (e.g. antibacterials and some anticancer drugs) are partly distributed in adipose tissues, and their dosage is based on IBW plus a percentage of the patient's excess bodyweight. There is no systematic relationship between the degree of lipophilicity of markedly lipophilic drugs (e.g. remifentanil and some beta-blockers) and their distribution in obese individuals. The distribution of a drug between fat and lean tissues may influence its pharmacokinetics in obese patients. Thus, the loading dose should be adjusted to the TBW or IBW, according to data from studies carried out in obese individuals. Adjustment of the maintenance dosage depends on the observed modifications in clearance. Our present knowledge of the influence of obesity on drug pharmacokinetics is limited. Drugs with a small therapeutic index should be used prudently and the dosage adjusted with the help of drug plasma concentrations.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Clin Pharmacol Ther. 1992 Jan;51(1):18-23 - PubMed
    1. Blood. 1999 Jun 15;93(12):4436-40 - PubMed
    1. Cancer Chemother Pharmacol. 1987;20(3):219-22 - PubMed
    1. Ther Drug Monit. 1998 Jun;20(3):261-5 - PubMed
    1. Eur J Clin Pharmacol. 1991;41(2):171-4 - PubMed

MeSH terms