Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec 29;275(52):41469-75.
doi: 10.1074/jbc.M006539200.

Two-step processing of human frataxin by mitochondrial processing peptidase. Precursor and intermediate forms are cleaved at different rates

Affiliations
Free article

Two-step processing of human frataxin by mitochondrial processing peptidase. Precursor and intermediate forms are cleaved at different rates

P Cavadini et al. J Biol Chem. .
Free article

Abstract

We showed previously that maturation of the human frataxin precursor (p-fxn) involves two cleavages by the mitochondrial processing peptidase (MPP). This observation was not confirmed by another group, however, who reported only one cleavage. Here, we demonstrate conclusively that MPP cleaves p-fxn in two sequential steps, yielding a 18,826-Da intermediate (i-fxn) and a 17,255-Da mature (m-fxn) form, the latter corresponding to endogenous frataxin in human tissues. The two cleavages occur between residues 41-42 and 55-56, and both match the MPP consensus sequence RX downward arrow (X/S). Recombinant rat and yeast MPP catalyze the p --> i step 4 and 40 times faster, respectively, than the i --> m step. In isolated rat mitochondria, p-fxn undergoes a sequence of cleavages, p --> i --> m --> d(1) --> d(2), with d(1) and d(2) representing two C-terminal fragments of m-fxn produced by an unknown protease. The i --> m step is limiting, and the overall rate of p --> i --> m does not exceed the rate of m --> d(1) --> d(2), such that the levels of m-fxn do not change during incubations as long as 3 h. Inhibition of the i --> m step by a disease-causing frataxin mutation (W173G) leads to nonspecific degradation of i-fxn. Thus, the second of the two processing steps catalyzed by MPP limits the levels of mature frataxin within mitochondria.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources