Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;28(1):36-43.
doi: 10.1002/1526-968x(200009)28:1<36::aid-gene50>3.0.co;2-4.

Genetically distinct cardial cells within the Drosophila heart

Affiliations

Genetically distinct cardial cells within the Drosophila heart

K Gajewski et al. Genesis. 2000 Sep.

Abstract

Although often viewed as a simple pulsating tube, the Drosophila dorsal vessel is intricate in terms of its structure, cell types, and patterns of gene expression. Two nonidentical groups of cardial cells are observed in segments of the heart based on the differential expression of transcriptional regulators. These include sets of four cell pairs that express the homeodomain protein Tinman (Tin), alternating with groups of two cell pairs that express the orphan steroid hormone receptor Seven Up (Svp). Here we show that these myocardial cell populations are distinct in terms of their formation and gene expression profiles. The Svp-expressing cells are generated by asymmetric cell divisions of precursor cells based on decreases or increases in their numbers in numb or sanpodo mutant embryos. In contrast, the numbers of Tin-expressing cardial cells are unchanged in these genetic backgrounds, suggesting they arise from symmetric cell divisions. One function for Svp in the two pairs of cardial cells is to repress the expression of the tin gene and at least one of its targets, the beta3 tubulin gene. Further differences in the cells are substantiated by the identification of separable enhancers for D-mef2 gene transcription in the distinct cardioblast sets. Taken together, these results demonstrate a greater cellular and genetic complexity of the Drosophila heart than previously appreciated.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources