Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug 25;67(14):1773-81.
doi: 10.1016/s0024-3205(00)00756-6.

Correlation between brain glycogen and convulsive state in mice submitted to methionine sulfoximine

Affiliations

Correlation between brain glycogen and convulsive state in mice submitted to methionine sulfoximine

K Bernard-Helary et al. Life Sci. .

Abstract

It is now well established that in epileptic patients, hypometabolic foci appear during interictal periods. The meaning and the mechanism of such an hypometabolism are as yet unclear. The aim of the present investigation was to look for a putative relationship between glucose metabolism in the brain and the genesis of seizures in mice using administration of the convulsant, methionine sulfoximine. Besides its epileptic action, methionine sulfoximine is a powerful glycogenic agent. We analyzed the epileptogenic and glycogenic effects of methionine sulfoximine in two inbred mouse strains with different susceptibility towards the convulsant. CBA/J mice displayed high response to methionine sulfoximine. The tonic convulsions appeared 5-6 h after MSO administration, without brain glycogen content variations during the preconvulsive period. These mice died of status epilepticus during the first seizure(s). Conversely, C57BL/6J mice displayed low response to MSO. The tonic and clonic seizures appeared 8 to 14 h after MSO administration with only 2% mortality. The seizures were preceded by an increase in brain glycogen content during the preconvulsive period. Moreover, during seizures, C57BL/6J mice were able to mobilize this accumulated brain glycogen, that returned to high value after seizures. The epileptic and glycogenic responses of the parental strains were also observed in mice of the F2 generation. The F2 mice that convulsed early (16%) did not utilize their small increase in brain glycogen content, and resembled CBA/J mice; while the F2 mice that seized tardily (24%) increased their brain glycogen content before convulsion, utilized it during convulsions, and resembled C57BL/6J mice. Sixty percent of the F2 mice presented an intermediate pattern in epileptogenic responses to the convulsant. These data suggest a possible genetic link between the two MSO effects, epileptiform seizures and increase in brain glycogen content. The increase in brain glycogen content and the capability of its mobilization during seizures could delay the seizure's onset and could be considered a "resistance factor" against the seizures.

PubMed Disclaimer

Publication types

LinkOut - more resources