Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;25(4):378-88.

Effects of sustained (+/-)pindolol administration on serotonin neurotransmission in rats

Affiliations

Effects of sustained (+/-)pindolol administration on serotonin neurotransmission in rats

N Haddjeri et al. J Psychiatry Neurosci. 2000 Sep.

Abstract

Objective: Given reports that (+/-)pindolol, a beta-adrenergic-5-HT1A/1B receptor antagonist, accelerates the onset of the therapeutic effect of certain antidepressant drugs in major depression, the aim of this study was to assess the effect of sustained (+/-)pindolol administration on the sensitivity of pre- and postsynaptic 5-HT1A receptors, terminal 5-HT1B autoreceptors and on overall 5-HT neurotransmission.

Design: Prospective animal study.

Animals: Sprague-Dawley rats.

Outcome measures: Modifications of the sensitivity of somatodendritic and postsynaptic 5-HT1A receptors using in vivo electrophysiological paradigms in animals treated with vehicle or (+/-)pindolol (20 mg/kg/day, subcutaneously) through osmotic minipumps for 2 weeks.

Results: (+/-)Pindolol attenuated the suppressant effect of the 5-HT autoreceptor agonist lysergic acid diethylamide (LSD) on the firing activity of 5-HT neurons, suggesting that (+/-)pindolol antagonized somatodendritic 5-HT1A autoreceptors in the dorsal raphe nucleus. However, following a 2-day washout period, the suppressant effect of LSD was still attenuated, indicating rather a desensitization of 5-HT1A autoreceptors had occurred. In the CA3 region of the dorsal hippocampus, (+/-)pindolol treatment did not modify the responsiveness of postsynaptic 5-HT1A receptors to microiontophoretic applications of 5-HT. Moreover, such a treatment modified neither the effectiveness of the electrical stimulation of 5-HT fibers nor the function of terminal 5-HT autoreceptors. Finally, the administration of the selective 5-HT1A receptor antagonist WAY 100635 (100 micrograms/kg, intravenously) did not increase the firing activity of dorsal hippocampus CA3 pyramidal neurons in rats treated with (+/-)pindolol, thus failing to reveal the enhanced tonic activation of postsynaptic 5-HT1A receptors associated with major classes of antidepressant treatments.

Conclusion: Prolonged administration of (+/-)pindolol by itself is not sufficient to enhance overall 5-HT neurotransmission; pindolol should therefore not be endowed with intrinsic antidepressant activity. Although pindolol is capable of antagonizing the 5-HT1A autoreceptor upon the initiation of a 5-HT reuptake-blocker treatment, it also induces a desensitization of this 5-HT1A autoreceptor, which could explain why patients do not relapse upon its discontinuation when they continue taking a 5-HT reuptake blocker.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Eur Neuropsychopharmacol. 1999 Sep;9(5):427-40 - PubMed
    1. Neuropharmacology. 1999 Jun;38(6):909-12 - PubMed
    1. Neuropsychopharmacology. 2000 Apr;22(4):346-56 - PubMed
    1. J Neurosci. 1986 Oct;6(10):2796-801 - PubMed
    1. Eur J Pharmacol. 1988 Feb 9;146(2-3):253-9 - PubMed

Publication types