Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum
- PMID: 11023914
- PMCID: PMC1301100
- DOI: 10.1016/S0006-3495(00)76458-7
Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum
Abstract
The energy transfer processes in isolated chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus have been studied at low temperatures (1.27 K) by two-pulse photon echo and one-color transient absorption techniques with approximately 100 fs resolution. The decay of the coherence in both types of chlorosomes is characterized by four different dephasing times stretching from approximately 100 fs up to 300 ps. The fastest component reflects dephasing that is due to interaction of bacteriochlorophylls with the phonon bath, whereas the other components correspond to dephasing due to different energy transfer processes such as distribution of excitation along the rod-like aggregates, energy exchange between different rods in the chlorosome, and energy transfer to the base plate. As a basis for the interpretation of the excitation dephasing and energy transfer pathways, a superlattice-like structural model is proposed based on recent experimental data and computer modeling of the Bchl c aggregates (1994. Photosynth. Res. 41:225-233.) This model predicts a fine structure of the Q(y) absorption band that is fully supported by the present photon echo data.
Similar articles
-
Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum.Chem Phys. 1995 May 15;194(2-3):245-58. doi: 10.1016/0301-0104(95)00019-k. Chem Phys. 1995. PMID: 11540594
-
Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria.Biochemistry. 2010 Sep 7;49(35):7504-15. doi: 10.1021/bi100607c. Biochemistry. 2010. PMID: 20701269
-
Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies.Biophys J. 1996 Aug;71(2):995-1010. doi: 10.1016/S0006-3495(96)79301-3. Biophys J. 1996. PMID: 8842237 Free PMC article.
-
Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria.Arch Microbiol. 2004 Oct;182(4):265-76. doi: 10.1007/s00203-004-0718-9. Epub 2004 Sep 1. Arch Microbiol. 2004. PMID: 15340781 Review.
-
Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes.Phys Chem Chem Phys. 2006 Feb 14;8(6):663-87. doi: 10.1039/b513086g. Epub 2005 Dec 15. Phys Chem Chem Phys. 2006. PMID: 16482307 Review.
Cited by
-
Ultrafast Anisotropy Decay Reveals Structure and Energy Transfer in Supramolecular Aggregates.J Phys Chem B. 2023 Aug 31;127(34):7487-7496. doi: 10.1021/acs.jpcb.3c04719. Epub 2023 Aug 18. J Phys Chem B. 2023. PMID: 37594912 Free PMC article.
-
Anisotropic distribution of emitting transition dipoles in chlorosome from Chlorobium tepidum: fluorescence polarization anisotropy study of single chlorosomes.Photosynth Res. 2009 May;100(2):67-78. doi: 10.1007/s11120-009-9429-z. Epub 2009 May 26. Photosynth Res. 2009. PMID: 19468858
-
Natural strategies for photosynthetic light harvesting.Nat Chem Biol. 2014 Jul;10(7):492-501. doi: 10.1038/nchembio.1555. Nat Chem Biol. 2014. PMID: 24937067 Review.
-
Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates.Photosynth Res. 2008 Jun;96(3):227-45. doi: 10.1007/s11120-008-9304-3. Epub 2008 Apr 29. Photosynth Res. 2008. PMID: 18443917
-
Contrasting packing modes for tubular assemblies in chlorosomes.Photosynth Res. 2024 Aug;161(1-2):105-115. doi: 10.1007/s11120-024-01089-3. Epub 2024 Mar 27. Photosynth Res. 2024. PMID: 38538911 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials