Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Oct;14(13):1876-88.
doi: 10.1096/fj.99-0943rev.

Co-repressors 2000

Affiliations
Review

Co-repressors 2000

L J Burke et al. FASEB J. 2000 Oct.

Abstract

In the last 5 years, many co-repressors have been identified in eukaryotes that function in a wide range of species, from yeast to Drosophila and humans. Co-repressors are coregulators that are recruited by DNA-bound transcriptional silencers and play essential roles in many pathways including differentiation, proliferation, programmed cell death, and cell cycle. Accordingly, it has been shown that aberrant interactions of co-repressors with transcriptional silencers provide the molecular basis of a variety of human diseases. Co-repressors mediate transcriptional silencing by mechanisms that include direct inhibition of the basal transcription machinery and recruitment of chromatin-modifying enzymes. Chromatin modification includes histone deacetylation, which is thought to lead to a compact chromatin structure to which the accessibility of transcriptional activators is impaired. In a general mechanistic view, the overall picture suggests that transcriptional silencers and co-repressors act in analogy to transcriptional activators and coactivators, but with the opposite effect leading to gene silencing. We provide a comprehensive overview of the currently known higher eukaryotic co-repressors, their mechanism of action, and their involvement in biological and pathophysiological pathways. We also show the different pathways that lead to the regulation of co-repressor-silencer complex formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources