Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 15;41(3):271-87.
doi: 10.1002/1097-0134(20001115)41:3<271::aid-prot10>3.0.co;2-z.

Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks

Affiliations
Free article

Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks

A G de Brevern et al. Proteins. .
Free article

Abstract

By using an unsupervised cluster analyzer, we have identified a local structural alphabet composed of 16 folding patterns of five consecutive C(alpha) ("protein blocks"). The dependence that exists between successive blocks is explicitly taken into account. A Bayesian approach based on the relation protein block-amino acid propensity is used for prediction and leads to a success rate close to 35%. Sharing sequence windows associated with certain blocks into "sequence families" improves the prediction accuracy by 6%. This prediction accuracy exceeds 75% when keeping the first four predicted protein blocks at each site of the protein. In addition, two different strategies are proposed: the first one defines the number of protein blocks in each site needed for respecting a user-fixed prediction accuracy, and alternatively, the second one defines the different protein sites to be predicted with a user-fixed number of blocks and a chosen accuracy. This last strategy applied to the ubiquitin conjugating enzyme (alpha/beta protein) shows that 91% of the sites may be predicted with a prediction accuracy larger than 77% considering only three blocks per site. The prediction strategies proposed improve our knowledge about sequence-structure dependence and should be very useful in ab initio protein modelling.

PubMed Disclaimer

LinkOut - more resources