Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun;164(1-2):87-98.
doi: 10.1016/s0303-7207(00)00237-9.

Alpha2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor

Affiliations

Alpha2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor

S T Mathews et al. Mol Cell Endocrinol. 2000 Jun.

Abstract

Human fetuin, [alpha2-Heremans Schmid Glycoprotein (alpha2-HSG)], is a natural inhibitor of insulin receptor tyrosine kinase activity (IR-TKA). Previously, we have demonstrated that alpha2-HSG inhibits the mitogenic pathway without affecting the metabolic arm of insulin signal transduction. In this study, we demonstrate the time-course and specificity of inhibition, its interaction with IR and probable physiological role. In intact rat1 fibroblasts overexpressing the human insulin receptor (HIRc B), incubation of recombinant human alpha2-HSGbac (1.8 microM) inhibited insulin-induced IR autophosphorylation by over 80%. This inhibitory effect of alpha2-HSGbac on insulin-induced IR autophosphorylation was blunted by half in 60 min. Interestingly, alpha2-HSGbac at similar concentrations (0.9 or 1.8 microM), had no effect on EGF- or IGF-I-induced cognate receptor autophosphorylation. Anti-alpha2-HSG immunoprecipitates of alpha2-HSGbac-treated HIRc B cell lysates demonstrated the presence of IR. Our data suggest that alpha2-HSGbac preferentially interacts with the activated IR. To further characterize the site(s) of interaction, the effect of alpha2-HSGbac on trypsin-treated IR autophosphorylation was studied. Trypsin-treatment of intact HIRc B cells results in proteolysis of the IR alpha-chain and constitutive activation of IR-TKA. We demonstrate that alpha2-HSGbac (0.1 microM) completely inhibited trypsin-activated IR autophosphorylation and TKA in vitro indicating that this effect was not mediated by its interaction with the proximal 576 amino acid residues of the IR alpha-subunit. The physiological relevance of these observations was explored by characterizing the effects of alpha2-HSG injection in rats. Alpha2-HSGbac (2 microM), acutely injected through the portal vein of normal rats, inhibited insulin-stimulated IR autophosphorylation and IRS-1 phosphorylation in liver and hindlimb muscle. Taken together our results suggest that alpha2-HSG, by interacting with IR, specifically inhibits insulin-stimulated IR autophosphorylation and may play a physiological role in the regulation of insulin signaling.

PubMed Disclaimer

MeSH terms

LinkOut - more resources