Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct;93(2):230-6.
doi: 10.1006/jsre.2000.5912.

Collagen-embedded platelet-derived growth factor DNA plasmid promotes wound healing in a dermal ulcer model

Affiliations

Collagen-embedded platelet-derived growth factor DNA plasmid promotes wound healing in a dermal ulcer model

J W Tyrone et al. J Surg Res. 2000 Oct.

Abstract

Background: Gene therapy has shown limited efficacy for treating congenital diseases, partly due to temporary gene expression and host immune responses. Such results suggest that gene therapy is ideal for chronic wound treatment where limited duration of target gene expression is required. This study tested the wound healing effects of topically applied platelet-derived growth factor (PDGF)-A or -B chain DNA plasmids embedded within a collagen lattice.

Materials and methods: Four 6-mm dermal ulcer wounds were created in the ears of young adult New Zealand White rabbits made ischemic by division of the central and rostral arteries. Wounds were treated with lyophilized collagen containing PDGF-B DNA (1.0-3.0 mg), PDGF-A DNA (1.0 mg), irrelevant DNA (1.0 mg), or collagen alone. Wounds were dressed and harvested after 10 days for measurement of granulation tissue formation, epithelialization, and wound closure. Results were evaluated with a paired two-tailed Student t test, with P values < 0.05 considered significant.

Results: PDGF-B DNA increased new granulation tissue (NGT) formation up to 52% and epithelialization 34% compared with controls. Wound closure was increased up to threefold. At 1.0 mg DNA, PDGF-A and PDGF-B stimulated similar responses. No difference in NGT or epithelialization was seen between control groups.

Conclusions: PDGF DNA gene therapy is effective at accelerating wound healing in ischemic dermal ulcers and provides a viable alternative to peptide growth factor therapy.

PubMed Disclaimer

Publication types

LinkOut - more resources