Molecular basis of nutrient-controlled gene expression in Saccharomyces cerevisiae
- PMID: 11028909
- PMCID: PMC11146803
- DOI: 10.1007/pl00000756
Molecular basis of nutrient-controlled gene expression in Saccharomyces cerevisiae
Abstract
The ability of a unicellular organism to alter patterns of gene expression in response to nutrient availability is essential to its survival in a changing environment. How is the cell able to identify individual metabolites amongst a myriad of other similar molecules, and convert the information of its presence into a concerted change in the transcription of the genes required for the response to that metabolite? There is increasing evidence that the activity of transcription factors can be influenced directly by interaction with metabolites. A variety of mechanisms have been identified by which this type of gene regulation by small molecules can occur.
Similar articles
-
Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway.Elife. 2017 May 9;6:e25157. doi: 10.7554/eLife.25157. Elife. 2017. PMID: 28485712 Free PMC article.
-
Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: a three factor design.BMC Genomics. 2008 Jul 18;9:341. doi: 10.1186/1471-2164-9-341. BMC Genomics. 2008. PMID: 18638364 Free PMC article.
-
Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast.PLoS Biol. 2008 Dec 23;6(12):2817-30. doi: 10.1371/journal.pbio.0060326. PLoS Biol. 2008. PMID: 19108609 Free PMC article.
-
Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.Crit Rev Biochem Mol Biol. 1997;32(5):405-35. doi: 10.3109/10409239709082675. Crit Rev Biochem Mol Biol. 1997. PMID: 9383611 Review.
-
Basic helix-loop-helix transcription factors and the cross-regulation of sulphate and phosphate metabolism in yeast.Biochem Soc Trans. 1996 May;24(2):354-9. doi: 10.1042/bst0240354. Biochem Soc Trans. 1996. PMID: 8736762 Review. No abstract available.
Cited by
-
Genome-wide identification and gene expression analysis of GHMP kinase gene family in banana cv. Rasthali.Mol Biol Rep. 2023 Nov;50(11):9061-9072. doi: 10.1007/s11033-023-08743-4. Epub 2023 Sep 20. Mol Biol Rep. 2023. PMID: 37731027
-
Rapid GAL gene switch of Saccharomyces cerevisiae depends on nuclear Gal3, not nucleocytoplasmic trafficking of Gal3 and Gal80.Genetics. 2011 Nov;189(3):825-36. doi: 10.1534/genetics.111.131839. Epub 2011 Sep 2. Genetics. 2011. PMID: 21890741 Free PMC article.
-
Variance heterogeneity in Saccharomyces cerevisiae expression data: trans-regulation and epistasis.PLoS One. 2013 Nov 4;8(11):e79507. doi: 10.1371/journal.pone.0079507. eCollection 2013. PLoS One. 2013. PMID: 24223957 Free PMC article.
-
Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae.Eukaryot Cell. 2008 Dec;7(12):2061-8. doi: 10.1128/EC.00261-08. Epub 2008 Oct 24. Eukaryot Cell. 2008. PMID: 18952899 Free PMC article.
-
Characterization of Saccharomyces cerevisiae protein Ser/Thr phosphatase T1 and comparison to its mammalian homolog PP5.BMC Cell Biol. 2003 Mar 28;4:3. doi: 10.1186/1471-2121-4-3. Epub 2003 Mar 28. BMC Cell Biol. 2003. PMID: 12694636 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases