Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2000;5(4):263-77.
doi: 10.1002/1097-0150(2000)5:4<263::AID-IGS5>3.0.CO;2-2.

Robotic motion compensation for respiratory movement during radiosurgery

Affiliations
Free article
Clinical Trial

Robotic motion compensation for respiratory movement during radiosurgery

A Schweikard et al. Comput Aided Surg. 2000.
Free article

Abstract

Tumors in the chest and abdomen move during respiration. The ability of conventional radiation therapy systems to compensate for respiratory motion by moving the radiation source is inherently limited. Since safety margins currently used in radiation therapy increase the radiation dose by a very large amount, an accurate tracking method for following the motion of the tumor is of the utmost clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. Thus, the therapeutic beam is moved by a robotic arm, and follows the moving target tumor. To determine the precise position of the moving target, we combine infrared tracking with synchronized X-ray imaging. Infrared emitters are used to record the motion of the patient's skin surface. A stereo X-ray imaging system provides information about the location of internal markers. During an initialization phase (prior to treatment), the correlation between the motions observed by the two sensors (X-ray imaging and infrared tracking) is computed. This model is also continuously updated during treatment to compensate for other, non-respiratory motion. Experiments and clinical trials suggest that robot-based methods can substantially reduce the safety margins currently needed in radiation therapy.

PubMed Disclaimer

Publication types

LinkOut - more resources