Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov;279(5):C1621-30.
doi: 10.1152/ajpcell.2000.279.5.C1621.

Cation transport and cell volume changes in maturing rat reticulocytes

Affiliations
Free article

Cation transport and cell volume changes in maturing rat reticulocytes

H Mairbäurl et al. Am J Physiol Cell Physiol. 2000 Nov.
Free article

Abstract

During maturation, reticulocytes lose membrane material, including transporters, and this is accompanied by a loss of cell water and volume. Here we determined a possible role of ion transport in adjusting cell volume during maturation. Reticulocytes and red blood cells of different ages were prepared from erythropoietin-treated rats by density gradient fractionation. Cell volume and ion transport were measured in freshly prepared cells and in reticulocytes during in vitro maturation. Reticulocytes had an increased K content and cell volume, whereas intracellular Na was decreased. All parameters approached whole blood values after 2 days in culture. Na-K pump was elevated in reticulocytes and decreased during maturation. Na-K-2Cl cotransport (NKCC) activity was lower in reticulocytes and was activated 8- and 20-fold by shrinkage and okadaic acid, respectively, whereas stimulation was barely detectable in high-buoyant density red blood cells. The ouabain- and bumetanide-insensitive Na flux in reticulocytes decreased on maturation. Most of it was inhibited by amiloride, indicating the presence of Na/proton exchange. Our results show that, although the Na-K-pump activity in reticulocytes is very much increased, the enhanced capacity of NKCC is essentially cryptic until stimulated. Both types of capacities (activities) decrease during maturation, indicating a possible loss of transport protein. The decrease was constrained to the period of reticulocyte maturation. Loss of transport capacity appears to exceed the loss of membrane surface area. Reticulocyte age-related changes in the net electrochemical driving force indicate that the increasing NKCC activity might contribute to the reduction in cell water.

PubMed Disclaimer

Publication types

LinkOut - more resources