Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Oct;162(4 Pt 1):1342-7.
doi: 10.1164/ajrccm.162.4.9912041.

Ozone, but not nitrogen dioxide, exposure decreases glutathione peroxidases in epithelial lining fluid of human lung

Affiliations
Comparative Study

Ozone, but not nitrogen dioxide, exposure decreases glutathione peroxidases in epithelial lining fluid of human lung

N E Avissar et al. Am J Respir Crit Care Med. 2000 Oct.

Abstract

Antioxidants, such as glutathione peroxidases (GPxs), in epithelial lining fluid (ELF) protect against health effects of oxidant pollutants, which includes O(3) or NO(2). We hypothesized that GPxs concentration in ELF is responsive to O(3) or NO(2) exposure. Subjects underwent two 4-h exposures to O(3) (0.22 ppm) and one to air. In another experiment, subjects underwent 3-h exposures to air and NO(2) (0.6 and 1.5 ppm). Bronchoalveolar lavage (BAL) was performed immediately or 18 h after O(3) exposure and 3.5 h after each NO(2) exposure. GPx activity and extracellular GPx (eGPx) protein concentrations were determined in ELF, and their relationships to markers of lung function, inflammation, and epithelial permeability were examined. Although the total amounts were not changed, basal (air) GPx activity (223.6 +/- 24.4 mU/ml), basal eGPx protein concentration (2.62 +/- 0.25 microg/ml), and basal ELF dilution factor (152.3 +/- 8.4) decreased 40% immediately after O(3) exposure and remained 30% decreased 18 h after exposure (p = 0.0001). No effect of NO(2) exposure on GPxs concentration was detected. There was an inverse correlation between baseline ELF eGPx protein concentration and the change in PMN 18 h after O(3) exposure (p = 0.04). Thus, O(3), a strong oxidant, decreases both GPx activity and eGPx protein in ELF, whereas NO(2), a weaker oxidant, does not. eGPx in ELF may protect against O(3)-induced airway inflammation.

PubMed Disclaimer

Publication types