Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan 12;276(2):1459-65.
doi: 10.1074/jbc.M008050200.

c-Jun N-terminal kinase activation in Xenopus laevis eggs and embryos. A possible non-genomic role for the JNK signaling pathway

Affiliations
Free article

c-Jun N-terminal kinase activation in Xenopus laevis eggs and embryos. A possible non-genomic role for the JNK signaling pathway

C P Bagowski et al. J Biol Chem. .
Free article

Abstract

The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase family that play critical roles in stress responses and apoptosis. We have discovered that JNK is present in Xenopus oocytes, an experimental system that offers a variety of powerful experimental approaches to questions of protein function and regulation. Like ERK2/p42 MAPK, JNK is activated just prior to germinal vesicle breakdown during Xenopus oocyte maturation and remains active throughout meiosis I and II. However, unlike p42 MAPK, which is inactivated about 30 min after eggs are fertilized or parthenogenetically activated, JNK stays constitutively active until the early gastrula stage of embryogenesis. These findings suggest that the JNK pathway may play a role in oocyte maturation and embryogenesis. JNK was activated by microinjection of Mos, by activation of an estrogen-inducible form of Raf, and by a constitutively active MEK-1 (MEK R4F), indicating that the p42 MAPK cascade can trigger JNK activation. However, the MEK inhibitor U0126 blocked progesterone-induced p42 MAPK activation but not progesterone-induced JNK activation. Thus, progesterone can stimulate JNK activation both through the MEK/p42 MAPK pathway and through MEK/p42 MAPK-independent pathways. Many of the key substrates of JNKs identified to date are transcriptional regulators. However, since transcription is not required for germinal vesicle breakdown in progesterone-treated oocytes or for the early embryonic cell cycles, our findings suggest that in these contexts the JNK pathway exerts nongenomic effects.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources