Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;54(3):370-5.
doi: 10.1007/s002530000410.

Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7

Affiliations

Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7

J Xu et al. Appl Microbiol Biotechnol. 2000 Sep.

Abstract

The characteristics of regulation of the gene encoding the third xylanase (Xyn III) of a filamentous fungus, Trichoderma reesei PC-3-7, were studied by Northern blot analysis. A partial DNA sequence (185 bp) of the xyn3 gene was obtained by PCR amplification of genomic DNA of T. reesei PC-3-7 and sequenced. This xyn3 gene fragment was used as a probe for Southern and Northern blot analysis. The expression of the xyn3 gene was regulated at the transcriptional level. The xyn3 mRNA was expressed in mycelia of T. reesei PC-3-7 induced by Avicel, L-sorbose and sophorose, but not by xylose, xylooligosaccharides and birchwood xylan. Furthermore, it was observed that xyn3 was synchronously expressed with egll but not with xyn1 and xyn2 by L-sorbose, indicating that the xyn3 gene may be coordinately expressed with cellulase genes. By Southern blot analysis, the xyn3 gene was confirmed to exist as a single copy in both strains of T. reesei PC-3-7 and QM9414. However, no xyn3 mRNA appeared in the mycelia induced by any kind of inducers in T. reesei QM9414 even when total RNA was used in large excess, suggesting that the xyn3 gene in T. reesei QM9414 is in the dormant state and cannot be expressed. Therefore, T. reesei PC-3-7 may be a very useful strain for elucidating the induction mechanism of xylanase biosynthesis by cellulosic and xylanosic substrates, and also the regulatory correlation between cellulase and xylanase induction.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources