Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000:51:435-71.
doi: 10.1146/annurev.physchem.51.1.435.

Molecular dynamics simulation of nucleic acids

Affiliations
Review

Molecular dynamics simulation of nucleic acids

T E Cheatham 3rd et al. Annu Rev Phys Chem. 2000.

Abstract

We review molecular dynamics simulations of nucleic acids, including those completed from 1995 to 2000, with a focus on the applications and results rather than the methods. After the introduction, which discusses recent advances in the simulation of nucleic acids in solution, we describe force fields for nucleic acids and then provide a detailed summary of the published literature. We emphasize simulations of small nucleic acids ( approximately 6 to 24 mer) in explicit solvent with counterions, using reliable force fields and modern simulation protocols that properly represent the long-range electrostatic interactions. We also provide some limited discussion of simulation in the absence of explicit solvent. Absent from this discussion are results from simulations of protein-nucleic acid complexes and modified DNA analogs. Highlights from the molecular dynamics simulation are the spontaneous observation of A B transitions in duplex DNA in response to the environment, specific ion binding and hydration, and reliable representation of protein-nucleic acid interactions. We close by examining major issues and the future promise for these methods.

PubMed Disclaimer

LinkOut - more resources