Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Summer;13(2):137-44.
doi: 10.1089/109793300440721.

In vitro toxicity of mercury, cadmium, and arsenic to platelet aggregation: influence of adenylate cyclase and phosphodiesterase activity

Affiliations
Comparative Study

In vitro toxicity of mercury, cadmium, and arsenic to platelet aggregation: influence of adenylate cyclase and phosphodiesterase activity

S V Kumar et al. In Vitr Mol Toxicol. 2000 Summer.

Abstract

In vitro effect of mercury (Hg2+), cadmium (Cd2+), and arsenic (As3+) on adenylate cyclase (AC) and phosphodiesterase (PDE) activity in relation to platelet aggregation (PA) was studied in rats. Cd(2+) significantly elevated cAMP (p < 0.005) in a dose-dependent (5, 10 and 20 pmoles) manner while Hg(2+) and As(3+) significantly reduced the cAMP level (p < 0.01 and p < 0.005, respectively). Our studies further reveal that Hg21 and As(3+) inhibit AC and stimulate PDE activity with a concomitant increase in the rate of PA. On the other hand, Cd(2+) stimulates AC and inhibits PDE activity with a decrease in the rate of PA. The present investigation suggests that cellular cAMP is a regulatory molecule in the event of PA and the disruption of its homeostasis is directly correlated to xenobiotic effects on PA. It is concluded that other than divalent heavy metal cations, As(3+) appears to be one of the most toxic xenobiotics to platelet function.

PubMed Disclaimer

Publication types

LinkOut - more resources