Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep 30;117(1-2):53-60.
doi: 10.1016/s0378-4274(00)00236-8.

N-acetyl L-cysteine attenuates oxidant-mediated toxicity induced by chrysotile fibers

Affiliations

N-acetyl L-cysteine attenuates oxidant-mediated toxicity induced by chrysotile fibers

F Afaq et al. Toxicol Lett. .

Abstract

Chrysotile, an important commercial variety of asbestos, is known to cause oxidative stress by enhancing production of hydrogen peroxide (H(2)O(2)) and thiobarbituric acid reactive substances (TBARS), depleting glutathione (GSH) and altering levels of GSH redox system enzymes. N-acetyl L-cysteine (NAC), a compound that increases GSH levels, protects cells against chrysotile toxicity. In the present study, rats were exposed intratracheally to a single dose (5 mg/rat) of chrysotile. This was followed by a daily dose of NAC 50 mg/kg. b. wt., i.p. At 1, 4, 8 and 16 days post chrysotile exposure lung lavage fluid was collected to determine H(2)O(2) generation, TBARS production, GSH level and its redox system enzymes activities. A significant decrease in H(2)O(2) and TBARS, an increase in GSH content and its redox system enzymes was observed in chrysotile+NAC animals in comparison to chrysotile-exposed animals. In this preliminary study it appears that NAC may be protecting cells against oxidative damage. This protection may be due to its ability to maintain intracellular GSH/oxidative scavenging capability.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources