Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct 1;29(7):589-96.
doi: 10.1016/s0891-5849(00)00363-4.

Overexpression of CuZnSOD in coronary vascular cells attenuates myocardial ischemia/reperfusion injury

Affiliations

Overexpression of CuZnSOD in coronary vascular cells attenuates myocardial ischemia/reperfusion injury

Z Chen et al. Free Radic Biol Med. .

Abstract

Superoxide dismutase scavenges oxygen radicals, which have been implicated in ischemia/reperfusion (I/R) injury in the heart. Our experiments were designed to study the effect of a moderate increase of copper/zinc superoxide dismutase (CuZnSOD) on myocardial I/R injury in TgN(SOD1)3Cje transgenic mice. A species of 0.8 kb human CuZnSOD mRNA was expressed, and a 273% increase in CuZnSOD activity was detected in the hearts of transgenic mice with no changes in the activities of other antioxidant enzymes. Furthermore, immunoblot analysis revealed no changes in the levels of HSP-70 or HSP-25 levels. Immunocytochemical study indicated that there was increased labeling of CuZnSOD in the cytosolic fractions of both endothelial cells and smooth muscle cells, but not in the myocytes of the hearts from transgenic mice. When these hearts were perfused as Langendorff preparations for 45 min after 35 min of global ischemia, the functional recovery of the hearts, expressed as heart rate x LVDP, was 48 +/- 3% in the transgenic hearts as compared to 30 +/- 5% in the nontransgenic hearts (p <.05). The improved cardiac function was accompanied by a significant reduction in lactate dehydrogenase release from the transgenic hearts. Our results demonstrate that overexpression of CuZnSOD in coronary vascular cells renders the heart more resistant to I/R injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources