Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov:113 Pt 21:3815-23.
doi: 10.1242/jcs.113.21.3815.

Tension on chromosomes increases the number of kinetochore microtubules but only within limits

Affiliations

Tension on chromosomes increases the number of kinetochore microtubules but only within limits

J M King et al. J Cell Sci. 2000 Nov.

Abstract

When chromosomes attach properly to a mitotic spindle, their kinetochores generate force in opposite directions, creating tension. Tension is presumed to increase kinetochore microtubule number, but there has been no direct evidence this is true. We micromanipulated grasshopper spermatocyte chromosomes to test this assumption and found that tension does indeed affect the number of kinetochore microtubules. Releasing tension at kinetochores causes a drop to less than half the original number of kinetochore microtubules. Restoring tension onto these depleted kinetochores restores the microtubules to their original number. However, the effects of tension are limited. Prometaphase kinetochores, when under normal tension from mitotic forces, have about half as many microtubules as they will in late metaphase. We imposed a tension force of 6 x 10(-5) dynes, three times the normal tension, on prometaphase kinetochores. The elevated tension did not drive kinetochore microtubule number above normal prometaphase values. Tension probably increases the number of kinetochore microtubules by slowing their turnover rate. The limited effect of tension at prometaphase kinetochores suggests that they have fewer microtubule binding sites than at late metaphase. The relatively few sites available in prometaphase may be the decisive sites whose binding of microtubules regulates the dynamics of transient kinetochore constituents, including checkpoint components.

PubMed Disclaimer

Publication types

LinkOut - more resources