Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan 12;276(2):1020-5.
doi: 10.1074/jbc.M006184200.

The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel

Affiliations
Free article

The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel

B Nilius et al. J Biol Chem. .
Free article

Abstract

The epithelial Ca(2+) channel (ECaC), which was recently cloned from rabbit kidney, exhibits distinctive properties that support a facilitating role in transcellular Ca(2+) (re)absorption. ECaC is structurally related to the family of six transmembrane-spanning ion channels with a pore-forming region between S5 and S6. Using point mutants of the conserved negatively charged amino acids present in the putative pore, we have identified a single aspartate residue that determines Ca(2+) permeation of ECaC and modulation by extracellular Mg(2+). Mutation of the aspartate residue, D542A, abolishes Ca(2+) permeation and Ca(2+)-dependent current decay as well as block by extracellular Mg(2+), whereas monovalent cations still permeate the mutant channel. Variation of the side chain length in mutations D542N, D542E, and D542M attenuated Ca(2+) permeability and Ca(2+)-dependent current decay. Block of monovalent currents through ECaC by Mg(2+) was decreased. Exchanging the aspartate residue for a positively charged amino acid, D542K, resulted in a nonfunctional channel. Mutations of two neighboring negatively charged residues, i.e. Glu(535) and Asp(550), had only minor effects on Ca(2+) permeation properties.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources