Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;41(8):960-7.
doi: 10.1093/pcp/pcd021.

Are isocitrate lyase and phosphoenolpyruvate carboxykinase involved in gluconeogenesis during senescence of barley leaves and cucumber cotyledons?

Affiliations

Are isocitrate lyase and phosphoenolpyruvate carboxykinase involved in gluconeogenesis during senescence of barley leaves and cucumber cotyledons?

Z H Chen et al. Plant Cell Physiol. 2000 Aug.

Abstract

The aim of this study was to investigate whether gluconeogenesis catalysed by phosphoenolpyruvate carboxykinase (PEPCK) occurs during leaf senescence. This was addressed by determining changes in the abundance and intercellular location of enzymes necessary for gluconeogenesis during the senescence of barley leaves and cucumber cotyledons. PEPCK was never present in barley leaves, despite the presence of large amounts of isocitrate lyase (ICL), a key enzyme of the glyoxylate cycle, and of its product, glyoxylate. Although PEPCK was present in non-senescent cucumber cotyledons, its abundance declined during senescence. Throughout senescence, PEPCK was only present in the trichomes and vasculature, whereas ICL was located in mesophyll cells. Pyruvate,Pi dikinase (PPDK) which, in concert with NAD(P)-malic enzyme, is also capable of catalysing gluconeogenesis, was present in non-senescent barley leaves and cucumber cotyledons, but in both plants its abundance decreased greatly during senescence. The abundance of ICL was greatly reduced in senescing detached barley leaves by either illumination or by co-incubation with sucrose, and greatly increased in darkened attached barley leaves. These results argue against the large-scale occurrence of gluconeogenesis during senescence catalysed either by PEPCK or PPDK. In cucumber cotyledons, PEPCK may play a role in metabolic processes linked to the export of amino acids, a role in which phosphoenolpyruvate carboxylase may also be involved. The amount of ICL was increased by starvation and during senescence may function in the conversion of lipids to organic acids, which are then utilised in the mobilisation of amino acids from leaf protein.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources