Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975:5A:135-42.
doi: 10.1007/978-1-4684-2895-7_17.

Enzymic mechanism of excision-repair in T4-infected cells

Enzymic mechanism of excision-repair in T4-infected cells

M Sekiguchi et al. Basic Life Sci. 1975.

Abstract

Excision of pyrimidine dimers from ultraviolet-irradiated DNA in a cell-free system of Escherichia coli infected with bacteriophage T4 consists of two different steps, one to induce a single-strand break at a point close to a pyrimidine dimer and the other to release dimer-containing nucleotide from the DNA. The enzymes responsible for these steps were isolated and the reactions were characterized; T4 endonuclease V introduces a break at the 5' side of a dimer and 5' in equilibrium 3' exonucleases, which are also induced by T4, act at the break to excise dimer-containing nucleotides. We isolated temperature-dependent v mutants, which exhibit increased sensitivity to UV at 42 degrees C but not at 30 degrees C, and found that the mutants induce temperature-sensitive T4 endonuclease V, indicating that the v gene of T4 is indeed the structural gene for T4 endonuclease V and that the enzyme is responsible for the first step of excision-repair. A possible mechanism of excision-repair in T4-infected cells is discussed.

PubMed Disclaimer

Similar articles

Cited by