Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct;36(4):501-5.
doi: 10.1161/01.hyp.36.4.501.

Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO

Affiliations

Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO

M W Nickola et al. Hypertension. 2000 Oct.

Abstract

Obesity is commonly associated with impaired myocardial contractile function. However, a direct link between these 2 states has not yet been established. There has been an indication that leptin, the product of the human obesity gene, may play a role in obesity-related metabolic and cardiovascular dysfunctions. The purpose of this study was to determine whether leptin exerts any direct cardiac contractile action that may contribute to altered myocardial function. Ventricular myocytes were isolated from adult male Sprague-Dawley rats. Contractile responses were evaluated by use of video-based edge detection. Contractile properties analyzed in cells electrically stimulated at 0.5 Hz included peak shortening, time to 90% peak shortening, time to 90% relengthening, and fluorescence intensity change. Leptin exhibited a dose-dependent inhibition in myocyte shortening and intracellular Ca(2+) change, with maximal inhibitions of 22.4% and 26.2%, respectively. Pretreatment with the NO synthase inhibitor N:(omega)-nitro-L-arginine methyl ester (L-NAME, 100 micromol/L) blocked leptin-induced inhibition of both peak shortening and fluorescence intensity change. Leptin also stimulated NO synthase activity in a time- and concentration-dependent manner, as reflected in the dose-related increase in NO accumulation in these cells. Addition of an NO donor (S-nitroso-N-acetyl-penicillamine [SNAP]) to the medium mimicked the effects of leptin administration. In summary, this study demonstrated a direct action of leptin on cardiomyocyte contraction, possibly through an increased NO production. These data suggest that leptin may play a role in obesity-related cardiac contractile dysfunction.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources