Gene conversion drives within genic sequences: concerted evolution of ribosomal RNA genes in bacteria and archaea
- PMID: 11040282
- DOI: 10.1007/s002390010093
Gene conversion drives within genic sequences: concerted evolution of ribosomal RNA genes in bacteria and archaea
Abstract
Multiple copies of a given ribosomal RNA gene family undergo concerted evolution such that sequences of all gene copies are virtually identical within a species although they diverge normally between species. In eukaryotes, gene conversion and unequal crossing over are the proposed mechanisms for concerted evolution of tandemly repeated sequences, whereas dispersed genes are homogenized by gene conversion. However, the homogenization mechanisms for multiple-copy, normally dispersed, prokaryotic rRNA genes are not well understood. Here we compared the sequences of multiple paralogous rRNA genes within a genome in 12 prokaryotic organisms that have multiple copies of the rRNA genes. Within a genome, putative sequence conversion tracts were found throughout the entire length of each individual rRNA genes and their immediate flanks. Individual conversion events convert only a short sequence tract, and the conversion partners can be any paralogous genes within the genome. Interestingly, the genic sequences undergo much slower divergence than their flanking sequences. Moreover, genomic context and operon organization do not affect rRNA gene homogenization. Thus, gene conversion underlies concerted evolution of bacterial rRNA genes, which normally occurs within genic sequences, and homogenization of flanking regions may result from co-conversion with the genic sequence.
Similar articles
-
Multiple Ribosomal RNA Operons in Bacteria; Their Concerted Evolution and Potential Consequences on the Rate of Evolution of Their 16S rRNA.Front Microbiol. 2018 Jun 8;9:1232. doi: 10.3389/fmicb.2018.01232. eCollection 2018. Front Microbiol. 2018. PMID: 29937760 Free PMC article.
-
Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria.J Mol Evol. 2007 Jul;65(1):44-67. doi: 10.1007/s00239-006-0235-3. Epub 2007 Jun 12. J Mol Evol. 2007. PMID: 17568983
-
Rates of gene conversions between Escherichia coli ribosomal operons.G3 (Bethesda). 2021 Feb 9;11(2):jkaa002. doi: 10.1093/g3journal/jkaa002. G3 (Bethesda). 2021. PMID: 33585862 Free PMC article.
-
Implications of sequence variation on the evolution of rRNA.Chromosome Res. 2019 Mar;27(1-2):89-93. doi: 10.1007/s10577-018-09602-w. Epub 2019 Feb 5. Chromosome Res. 2019. PMID: 30719681 Free PMC article. Review.
-
Gene conversion and concerted evolution in bacterial genomes.FEMS Microbiol Rev. 2005 Apr;29(2):169-83. doi: 10.1016/j.femsre.2004.10.004. FEMS Microbiol Rev. 2005. PMID: 15808740 Review.
Cited by
-
Concerted evolution in the ribosomal RNA cistron.PLoS One. 2013;8(3):e59355. doi: 10.1371/journal.pone.0059355. Epub 2013 Mar 12. PLoS One. 2013. PMID: 23555022 Free PMC article.
-
Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity.Appl Environ Microbiol. 2013 Oct;79(19):5962-9. doi: 10.1128/AEM.01282-13. Epub 2013 Jul 19. Appl Environ Microbiol. 2013. PMID: 23872556 Free PMC article.
-
Natural selection promotes antigenic evolvability.PLoS Pathog. 2013;9(11):e1003766. doi: 10.1371/journal.ppat.1003766. Epub 2013 Nov 14. PLoS Pathog. 2013. PMID: 24244173 Free PMC article.
-
Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages.Plant Cell. 2011 Jan;23(1):27-37. doi: 10.1105/tpc.110.080622. Epub 2011 Jan 25. Plant Cell. 2011. PMID: 21266659 Free PMC article.
-
Homologous Recombination-Experimental Systems, Analysis, and Significance.EcoSal Plus. 2011 Dec;4(2):10.1128/ecosalplus.7.2.6. doi: 10.1128/ecosalplus.7.2.6. EcoSal Plus. 2011. PMID: 26442506 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources