Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Jul:15 Suppl 2:86-91.
doi: 10.1093/humrep/15.suppl_2.86.

Regulation of mitochondrial DNA copy number during spermatogenesis

Affiliations
Review

Regulation of mitochondrial DNA copy number during spermatogenesis

A Rantanen et al. Hum Reprod. 2000 Jul.

Abstract

The nuclear genome is physically compacted during spermatogenesis by replacing histones with protamines and transition proteins. This altered nuclear protein context may make gene regulation at the transcriptional level less efficient and could explain why post-transcriptional regulation is prominent in haploid male germ cells. Mitochondria and mitochondrial (mt) DNA are maternally inherited, whereas the transmission of paternal mtDNA is blocked in mammals. The paternal mtDNA enters the oocyte but is no longer detectable in the preimplantation embryo. Several mechanisms could be responsible for preventing the transmission of paternal mtDNA, including the down-regulation of mtDNA copy number during spermatogenesis, specific elimination of paternal mitochondria in fertilized oocytes, and the suspension of mtDNA replication in the fertilized oocyte. It is the first of these that is the subject of the present review. Mitochondrial transcription factor A (mtTFA, or Tfam) is a key regulator of mtDNA copy number in mammals. Germ cell-specific Tfam transcript isoforms are expressed during spermatogenesis in mice and humans. These alternative Tfam transcript isoforms have a structure that could prevent protein translation; their expression coincides with down-regulation of the mitochondrial Tfam protein values. We propose that this down-regulation of mitochondrial Tfam protein levels in turn down-regulates mtDNA copy number during mammalian spermatogenesis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources