Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Jul;92(3-4):187-96.
doi: 10.1016/s0248-4900(00)01068-6.

Ca2+ oscillations and the cell cycle at fertilisation of mammalian and ascidian eggs

Affiliations
Review

Ca2+ oscillations and the cell cycle at fertilisation of mammalian and ascidian eggs

V L Nixon et al. Biol Cell. 2000 Jul.

Abstract

At fertilisation of mammalian and ascidian eggs the sperm induces a series of Ca2+ oscillations. These Ca2+ oscillations are triggered by a sperm-borne Ca2+-releasing factor whose identity is still unresolved. In both mammals and ascidians Ca2+ oscillations in eggs are associated with the period leading up to exit from meiosis and entry into the first embryonic cell cycle. Thus, in mammals Ca2+ oscillations continue for several hours but are complete by within 30 min in the ascidian. In mammals and ascidians Ca2+ oscillations stop at around the time when pronuclei form in the 1-cell embryo. There is evidence to show that cell cycle factors are important in regulating the fertilisation Ca2+ signal. If the formation of pronuclei is blocked either in mammals (by spindle disruption) or in ascidians (by clamping maturation promoting factor levels high) then Ca2+ oscillations continue indefinitely. Here, we explore the nature of the sperm Ca2+-releasing factor and examine the relationship between cell cycle resumption and the control of Ca2+ oscillations at fertilisation.

PubMed Disclaimer

Publication types

LinkOut - more resources