Tumor necrosis factor alpha-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes
- PMID: 11043572
- DOI: 10.1210/mend.14.10.0542
Tumor necrosis factor alpha-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes
Abstract
Tumor necrosis factor-alpha (TNFalpha) has been implicated as a contributing mediator of insulin resistance observed in pathophysiological conditions such as obesity, cancer-induced cachexia, and bacterial infections. Previous studies have demonstrated that TNFalpha confers insulin resistance by promoting phosphorylation of serine residues on insulin receptor substrate 1 (IRS-1), thereby diminishing subsequent insulin-induced tyrosine phosphorylation of IRS-1. However, little is known about which signaling molecules are involved in this process in adipocytes and about the temporal sequence of events that ultimately leads to TNFalpha-stimulated IRS-1 serine phosphorylation. In this study, we demonstrate that specific inhibitors of the MAP kinase kinase (MEK)1/2-p42/44 mitogen-activated protein (MAP) kinase pathway restore insulin signaling to normal levels despite the presence of TNFalpha. Additional experiments show that MEK1/2 activity is required for TNFalpha-induced IRS-1 serine phosphorylation, thereby suggesting a mechanism by which these inhibitors restore insulin signaling. We observe that TNFalpha requires 2.5-4 h to markedly reduce insulin-triggered tyrosine phosphorylation of IRS-1 in 3T3-L1 adipocytes. Although TNFalpha activates p42/44 MAP kinase, maximal stimulation is observed within 10-30 min. To our surprise, p42/44 activity returns to basal levels well before IRS-1 serine phosphorylation and insulin resistance are observed. These activation kinetics suggest a mechanism of p42/44 action more complicated than a direct phosphorylation of IRS-1 triggered by the early spike of TNFalpha-induced p42/44 activity. Chronic TNFalpha treatment (>> 72 h) causes adipocyte dedifferentiation, as evidenced by the loss of triglycerides and down-regulation of adipocyte-specific markers. We observe that this longer term TNFalpha-mediated dedifferentiation effect utilizes alternative, p42/44 MAP kinase-independent intracellular pathways. This study suggests that TNFalpha-mediated insulin resistance, but not adipocyte dedifferentiation, is mediated by the MEK1/2-p42/44 MAP kinase pathway.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
