Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Nov;175(5):1329-34.
doi: 10.2214/ajr.175.5.1751329.

Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask

Affiliations
Comparative Study

Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask

H U Kauczor et al. AJR Am J Roentgenol. 2000 Nov.

Abstract

Objective: We compared multiple neural networks with a density mask for the automatic detection and quantification of ground-glass opacities on high-resolution CT under clinical conditions.

Subjects and methods: Eighty-four patients (54 men and 30 women; age range, 18-82 years; mean age, 49 years) with a total of 99 consecutive high-resolution CT scans were enrolled in the study. The neural network was designed to detect ground-glass opacities with high sensitivity and to omit air-tissue interfaces to increase specificity. The results of the neural network were compared with those of a density mask (thresholds, -750/-300 H), with a radiologist serving as the gold standard.

Results: The neural network classified 6% of the total lung area as ground-glass opacities. The density mask failed to detect 1.3%, and this percentage represented the increase in sensitivity that was achieved by the neural network. The density mask identified another 17.3% of the total lung area to be ground-glass opacities that were not detected by the neural network. This area represented the increase in specificity achieved by the neural network. Related to the extent of the ground-glass opacities as classified by the radiologist, the neural network (density mask) reached a sensitivity of 99% (89%), specificity of 83% (55%), positive predictive value of 78% (18%), negative predictive value of 99% (98%), and accuracy of 89% (58%).

Conclusion: Automatic segmentation and quantification of ground-glass opacities on high-resolution CT by a neural network are sufficiently accurate to be implemented for the preinterpretation of images in a clinical environment; it is superior to a double-threshold density mask.

PubMed Disclaimer

Publication types

MeSH terms