Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct 24;102(17):2137-44.
doi: 10.1161/01.cir.102.17.2137.

Enhanced Ca(2+) release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis

Affiliations

Enhanced Ca(2+) release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis

K R Sipido et al. Circulation. .

Abstract

Background: Ventricular arrhythmias are a major cause of sudden death in patients with heart failure and hypertrophy. The dog with chronic complete atrioventricular block (CAVB) has biventricular hypertrophy and ventricular arrhythmias and is a useful model to study underlying cellular mechanisms. We investigated whether changes in Ca(2+) homeostasis are part of the contractile adaptation to CAVB and might contribute to arrhythmogenesis.

Methods and results: In enzymatically isolated myocytes, cell shortening, Ca(2+) release from the sarcoplasmic reticulum (SR), and SR Ca(2+) content were enhanced at low stimulation frequencies. Ca(2+) influx through L-type Ca(2+) channels was unchanged, but Ca(2+) influx via the Na/Ca exchanger was increased and contributed to Ca(2+) loading of the SR. Inward Na/Ca exchange currents were also larger. Changes in Ca(2+) fluxes were less pronounced in the right versus left ventricle.

Conclusions: Enhanced Na/Ca exchange activity may improve contractile adaptation to CAVB but at the same time facilitate arrhythmias by (1) increasing the propensity to Ca(2+) overload, (2) providing more inward current leading to (nonhomogeneous) action potential prolongation, and (3) enhancing (arrhythmogenic) currents during spontaneous Ca(2+) release.

PubMed Disclaimer

Publication types

MeSH terms