Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul-Aug;11(7-8):382-92.
doi: 10.1016/s0955-2863(00)00094-2.

Effects of dietary n-3 fatty acids on contractility, Na+ and K+ currents in a rat cardiomyocyte model of arrhythmia

Affiliations

Effects of dietary n-3 fatty acids on contractility, Na+ and K+ currents in a rat cardiomyocyte model of arrhythmia

W R Leifert et al. J Nutr Biochem. 2000 Jul-Aug.

Abstract

The n-3 polyunsaturated fatty acids (PUFAs) have been reported to prevent ventricular fibrillation in human clinical studies and in studies involving experimental animals and isolated cardiomyocytes. This study aimed to determine whether dietary n-3 PUFAs could prevent isoproterenol and free radical-induced arrhythmic (asynchronous) contractile activity in adult rat cardiomyocytes and whether whole-cell Na(+) and K(+) currents measured by patch-clamp techniques were affected. Dietary supplementation with fish oil for 3 weeks significantly increased the proportion of total n-3 PUFAs in ventricular membrane phospholipids compared with saturated fat supplementation (18.8 +/- 0.6% vs. 8.1 +/- 1.0%, respectively). Cardiomyocytes from the fish oil group were less susceptible to isoproterenol-induced asynchronous contractile activity than were those from the saturated fat group [EC(50) values: 892 +/- 130 nM, n = 6 and 347 +/- 91 nM, n = 6 (P < 0.05), respectively]. Fish oil supplementation also prolonged the time taken to develop asynchronous contractile activity induced by superoxide and hydrogen peroxide. The voltage dependence of inactivation of Na(+) currents were significantly altered (-73.5 +/- 1.2 mV, n = 5 vs. -76.7 +/- 0.7 mV, n = 5, P < 0.05, for saturated fat and fish oil treated groups, respectively). The voltage dependence of activation of Na(+) and K(+) currents was not significantly affected by the dietary fish oil treatment. These results demonstrate the antiarrhythmic effects of dietary fish oil in a cardiomyocyte model of arrhythmia.

PubMed Disclaimer

LinkOut - more resources