Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov;279(5):H2133-42.
doi: 10.1152/ajpheart.2000.279.5.H2133.

Phenotypical features of long Q-T syndrome in transgenic mice expressing human Na-K-ATPase alpha(3)-isoform in hearts

Affiliations
Free article

Phenotypical features of long Q-T syndrome in transgenic mice expressing human Na-K-ATPase alpha(3)-isoform in hearts

S E O'Brien et al. Am J Physiol Heart Circ Physiol. 2000 Nov.
Free article

Abstract

To understand why the adult human heart expresses three isoforms of the sodium pump, we generated transgenic mice (TGM) with 2.3- to 5. 5-fold overexpression of the human alpha(3)-isoform of Na-K-ATPase in the heart. Hearts from the TGM had increased maximal Na-K-ATPase activity and ouabain affinity compared with control hearts, even though the density of Na-K-ATPase pump sites (of all isoforms) was similar to that of control mice. In perfused hearts, contractility both at baseline and in the presence of ouabain tended to be greater in TGM than in controls. Surface electrocardiograms in anesthetized TGM had a steeper dependence of Q-T on sinus cycle length, and Q-T intervals measured during atrial pacing were significantly longer in TGM. Q-T dispersion during sinus rhythm also tended to be longer in TGM. Thus TGM overexpressing human alpha(3)-isoform have several of the phenotypical features of human long Q-T syndrome, despite the absence of previously described mutations in Na(+) or K(+) channels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources