Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov;279(5):H2249-58.
doi: 10.1152/ajpheart.2000.279.5.H2249.

Dependence of intestinal arteriolar regulation on flow-mediated nitric oxide formation

Affiliations
Free article

Dependence of intestinal arteriolar regulation on flow-mediated nitric oxide formation

H G Bohlen et al. Am J Physiol Heart Circ Physiol. 2000 Nov.
Free article

Abstract

Our hypothesis was that a large fraction of resting nitric oxide (NO) formation is driven by flow-mediated mechanisms in the intestinal microvasculature of the rat. NO-sensitive microelectrodes measured the in vivo perivascular NO concentration ([NO]). Flow was increased by forcing the arterioles to perfuse additional nearby arterioles; flow was decreased by lowering the mucosal metabolic rate by reducing sodium absorption. Resting periarteriolar [NO] of large arterioles (first order; 1A) and intermediate-sized arterioles (second order; 2A) was 337 +/- 20 and 318 +/- 21 nM. The resting [NO] was higher than the dissociation constant for the NO-guanylate cyclase reaction of vascular smooth muscle; therefore, resting [NO] should be a potent dilatory signal at rest. Over flow velocity and shear rate ranges of approximately 40-180% of control, periarteriolar [NO] changed 5-8% for each 10% change in flow velocity and shear rate. The relationship of [NO] to flow velocity and shear rate demonstrated that 60-80% of resting [NO] depended on flow-mediated mechanisms. Therefore, moment-to-moment regulation of [NO] at rest is an ongoing process that is highly dependent on flow-dependent mechanisms.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources