Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jan;61(1):740-6.
doi: 10.1103/physreve.61.740.

Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons

Affiliations

Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons

Y Wang et al. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan.

Abstract

The coherence resonance (CR) of globally coupled Hodgkin-Huxley neurons is studied. When the neurons are set in the subthreshold regime near the firing threshold, the additive noise induces limit cycles. The coherence of the system is optimized by the noise. The coupling of the network can enhance CR in two different ways. In particular, when the coupling is strong enough, the synchronization of the system is induced and optimized by the noise. This synchronization leads to a high and wide plateau in the local CR curve. A bell-shaped curve is found for the peak height of power spectra of the spike train, being significantly different from a monotonic behavior for the single neuron. The local-noise-induced limit cycle can evolve to a refined spatiotemporal order through the dynamical optimization among the autonomous oscillation of an individual neuron, the coupling of the network, and the local noise.

PubMed Disclaimer

LinkOut - more resources