Viscoelastic theory for nematic interfaces
- PMID: 11046435
- DOI: 10.1103/physreve.61.1540
Viscoelastic theory for nematic interfaces
Abstract
A complete macroscopic theory for compressible nematic-viscous fluid interfaces is developed and used to characterize the interfacial elastic, viscous, and viscoelastic material properties. The derived expression for the interfacial stress tensor includes elastic and viscous components. Surface gradients of the interfacial elastic stress tensor generates tangential Marangoni forces as well as normal forces. The latter may be present even in planar surfaces, implying that in principle static planar interfaces may accommodate pressure jumps. The asymmetric interfacial viscous stress tensor takes into account the surface nematic ordering and is given in terms of the interfacial rate of deformation and interfacial Jaumann derivative. The material function that describes the anisotropic viscoelasticity is the dynamic interfacial tension, which includes the interfacial tension and dilational viscosities. Viscous dissipation due to interfacial compressibility is described by the anisotropic dilational viscosity, and it is shown to describe the Boussinesq surface fluid appropriate for Newtonian interfaces when the director is homeotropic. Three characteristic interfacial shear viscosities are defined according to whether the surface orientation is along the velocity direction, the velocity gradient, or the unit normal. In the last case the expression reduces to the interfacial shear viscosity of the Boussinesq surface fluid. The theory provides a theoretical framework to study interfacial stability, thin liquid film stability and hydrodynamics, and any other interfacial rheology phenomena.
Similar articles
-
Tension gradients and Marangoni flows in nematic interfaces.Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):1077-80. doi: 10.1103/physreve.60.1077. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999. PMID: 11969858
-
Interfacial forces and Marangoni flow on a nematic drop retracting in an isotropic fluid.J Colloid Interface Sci. 2005 Oct 1;290(1):281-8. doi: 10.1016/j.jcis.2005.04.018. J Colloid Interface Sci. 2005. PMID: 16122548
-
Temperature effects on capillary instabilities in a thin nematic liquid crystalline fiber embedded in a viscous matrix.Eur Phys J E Soft Matter. 2002 Oct;9(2):171-93. doi: 10.1140/epje/i2002-10083-3. Eur Phys J E Soft Matter. 2002. PMID: 15015115
-
Relevance of interfacial viscoelasticity in stability and conformation of biomolecular organizates at air/fluid interface.Adv Colloid Interface Sci. 2016 Aug;234:80-88. doi: 10.1016/j.cis.2016.04.002. Epub 2016 Apr 21. Adv Colloid Interface Sci. 2016. PMID: 27174489 Review.
-
Surface dilational rheological properties in the nonlinear domain.Adv Colloid Interface Sci. 2015 Aug;222:110-8. doi: 10.1016/j.cis.2014.07.006. Epub 2014 Jul 26. Adv Colloid Interface Sci. 2015. PMID: 25107511 Review.
LinkOut - more resources
Full Text Sources