Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov;279(5):L799-805.
doi: 10.1152/ajplung.2000.279.5.L799.

Synergistic and additive killing by antimicrobial factors found in human airway surface liquid

Affiliations
Free article

Synergistic and additive killing by antimicrobial factors found in human airway surface liquid

P K Singh et al. Am J Physiol Lung Cell Mol Physiol. 2000 Nov.
Free article

Abstract

Airway surface liquid contains multiple factors thought to provide a first line of defense against bacteria deposited in the airways. Although the antimicrobial action of individual factors has been studied, less is known about how they work in combination. We examined the combined action of six antimicrobial peptides found in airway surface liquid. The paired combinations of lysozyme-lactoferrin, lysozyme-secretory leukocyte protease inhibitor (SLPI), and lactoferrin-SLPI were synergistic. The triple combination of lysozyme, lactoferrin, and SLPI showed even greater synergy. Other combinations involving the human beta-defensins, LL-37, and tobramycin (often administered to cystic fibrosis patients by inhalation) were additive. Because the airway surface liquid salt concentration may be elevated in cystic fibrosis patients, we examined the effect of salt on the synergistic combinations. As the ionic strength increased, synergistic interactions were lost. Our data suggest that the antibacterial potency of airway surface liquid may be significantly increased by synergistic and additive interactions between antimicrobial factors. These results also suggest that increased salt concentrations that may exist in cystic fibrosis could inhibit airway defenses by diminishing these synergistic interactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources