Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2000 Nov;89(5):1868-78.
doi: 10.1152/jappl.2000.89.5.1868.

Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green

Affiliations
Free article
Clinical Trial

Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green

R Boushel et al. J Appl Physiol (1985). 2000 Nov.
Free article

Abstract

Using near-infrared spectroscopy (NIRS) and the tracer indocyanine green (ICG), we quantified blood flow in calf muscle and around the Achilles tendon during plantar flexion (1-9 W). For comparison, blood flow in calf muscle was determined by dye dilution in combination with magnetic resonance imaging measures of muscle volume, and, for the peritendon region, blood flow was measured by (133)Xe washout. From rest to a peak load of 9 W, NIRS-ICG blood flow in calf muscle increased from 2.4+/-0.2 to 74+/-5 ml x 100 ml tissue(-1) x min(-1), similar to that measured by reverse dye (77+/-6 ml x 100 ml tissue(-1) x min(-1)). Achilles peritendon blood flow measured by NIRS-ICG rose with exercise from 2.2+/-0.5 to 15.1+/-0.2 ml x 100 ml(-1) x min(-1), which was similar to that determined by (133)Xe washout (2.0+/-0.6 to 14.6+/-0.3 ml x 100 ml tissue(-1) x min(-1)). This is the first study using NIRS and ICG to quantify regional tissue blood flow during exercise in humans. Due to its high spatial and temporal resolution, the technique may be useful for determining regional blood flow distribution and regulation during exercise in humans.

PubMed Disclaimer

Publication types