The bulged nucleotide in the Escherichia coli minimal selenocysteine insertion sequence participates in interaction with SelB: a genetic approach
- PMID: 11053373
- PMCID: PMC94775
- DOI: 10.1128/JB.182.22.6302-6307.2000
The bulged nucleotide in the Escherichia coli minimal selenocysteine insertion sequence participates in interaction with SelB: a genetic approach
Abstract
The UGA codon, which usually acts as a stop codon, can also direct the incorporation into a protein of the amino acid selenocysteine. This UGA decoding process requires a cis-acting mRNA element called the selenocysteine insertion sequence (SECIS), which can form a stem-loop structure. In Escherichia coli, selenocysteine incorporation requires only the 17-nucleotide-long upper stem-loop structure of the fdhF SECIS. This structure carries a bulged nucleotide U at position 17. Here we asked whether the single bulged nucleotide located in the upper stem-loop structure of the E. coli fdhF SECIS is involved in the in vivo interaction with SelB. We used a genetic approach, generating and characterizing selB mutations that suppress mutations of the bulged nucleotide in the SECIS. All the selB suppressor mutations isolated were clustered in a region corresponding to 28 amino acids in the SelB C-terminal subdomain 4b. These selB suppressor mutations were also found to suppress mutations in either the loop or the upper stem of the E. coli SECIS. Thus, the E. coli SECIS upper stem-loop structure can be considered a "single suppressible unit," suggesting that there is some flexibility to the nature of the interaction between this element and SelB.
Figures




Similar articles
-
Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli.RNA Biol. 2018;15(4-5):461-470. doi: 10.1080/15476286.2018.1440876. Epub 2018 Mar 12. RNA Biol. 2018. PMID: 29447106 Free PMC article. Review.
-
Genetic probing of the interaction between the translation factor SelB and its mRNA binding element in Escherichia coli.Mol Gen Genet. 1999 Dec;262(4-5):800-6. doi: 10.1007/s004380051143. Mol Gen Genet. 1999. PMID: 10628863
-
An extended Escherichia coli "selenocysteine insertion sequence" (SECIS) as a multifunctional RNA structure.Biofactors. 2001;14(1-4):61-8. doi: 10.1002/biof.5520140109. Biofactors. 2001. PMID: 11568441 Review.
-
The nature of the minimal 'selenocysteine insertion sequence' (SECIS) in Escherichia coli.Nucleic Acids Res. 1998 Feb 15;26(4):896-902. doi: 10.1093/nar/26.4.896. Nucleic Acids Res. 1998. PMID: 9461445 Free PMC article.
-
Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome.Nucleic Acids Res. 1996 Oct 15;24(20):3903-10. doi: 10.1093/nar/24.20.3903. Nucleic Acids Res. 1996. PMID: 8918790 Free PMC article.
Cited by
-
Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif.Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13919-24. doi: 10.1073/pnas.0703448104. Epub 2007 Aug 22. Proc Natl Acad Sci U S A. 2007. PMID: 17715293 Free PMC article.
-
Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli.RNA Biol. 2018;15(4-5):461-470. doi: 10.1080/15476286.2018.1440876. Epub 2018 Mar 12. RNA Biol. 2018. PMID: 29447106 Free PMC article. Review.
-
A computational approach to identify genes for functional RNAs in genomic sequences.Nucleic Acids Res. 2001 Oct 1;29(19):3928-38. doi: 10.1093/nar/29.19.3928. Nucleic Acids Res. 2001. PMID: 11574674 Free PMC article.
-
Proteomic profiling of L-cysteine induced selenite resistance in Enterobacter sp. YSU.Proteome Sci. 2009 Aug 28;7:30. doi: 10.1186/1477-5956-7-30. Proteome Sci. 2009. PMID: 19715574 Free PMC article.
-
Crystal structure of an mRNA-binding fragment of Moorella thermoacetica elongation factor SelB.EMBO J. 2002 Aug 1;21(15):4145-53. doi: 10.1093/emboj/cdf408. EMBO J. 2002. PMID: 12145214 Free PMC article.
References
-
- Baron C, Böck A. In: tRNA: structure, biosynthesis and function. Söll D, RhajBhandary U, editors. Washington, D.C.: ASM Press; 1995. pp. 529–544.
-
- Berg B L, Li J, Heider J, Stewart V. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J Biol Chem. 1991;266:22380–22385. - PubMed
-
- Berry M J, Larsen P R. Recognition of UGA as a selenocysteine codon in eukaryotes: a review of recent progress. Biochem Soc Trans. 1993;21:827–832. - PubMed
-
- Böck A, Fochhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F. Selenocysteine: the 21st amino acid. Mol Microbiol. 1991;5:515–520. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases