Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Oct 15;51(2):138-48.
doi: 10.1002/1097-0029(20001015)51:2<138::AID-JEMT5>3.0.CO;2-T.

Epidermal growth factor is critical for intestinal adaptation following small bowel resection

Affiliations
Review

Epidermal growth factor is critical for intestinal adaptation following small bowel resection

L E Stern et al. Microsc Res Tech. .

Abstract

The loss of small intestinal mucosal surface area is a relatively common clinical situation seen in both the pediatric and adult population. The most frequent causes include mesenteric ischemia, trauma, inflammatory bowel disease, necrotizing enterocolitis, and volvulus. Following surgical resection, the remnant intestine compensates or adapts to the loss of native bowel by increasing its absorptive surface area and functional capacity. Unfortunately, many patients fail to adapt adequately, and are relegated to lifelong intravenous nutrition. Research into intestinal adaptation following small bowel resection (SBR) has evolved only recently from the gross and microscopic level to the biochemical and genetic level. As understanding of this process has increased, numerous therapeutic strategies to augment adaptation have been proposed. Epidermal growth factor (EGF) is an endogenous peptide that is secreted into the gastrointestinal tract and able to influence gut ontogeny, as well as mucosal healing. Early studies have demonstrated its ability to augment the adaptive process. Focusing on a murine model of massive intestinal loss, the morphological, structural, biochemical, and genetic changes that occur during the intestinal adaptive process will be reviewed. The role of EGF and its receptor as critical mediators of the adaptive process will be discussed. Additionally, the ability of EGF to augment intestinal proliferation and diminish programmed cell death (apoptosis) following SBR will be examined. Enhancing adaptation in a controlled manner may allow patients to transition off parenteral nutrition to enteral feeding and, thereby, normalize their lifestyle.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources