Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct;18(10):1445-50.
doi: 10.1097/00004872-200018100-00012.

Metformin treatment corrects vascular insulin resistance in hypertension

Affiliations

Metformin treatment corrects vascular insulin resistance in hypertension

S Verma et al. J Hypertens. 2000 Oct.

Abstract

Objective: In states of insulin resistance, the vasorelaxant actions of insulin are blunted, which may contribute towards the development of increased vascular tone/hypertension and reduced glucose uptake. To examine whether treating insulin resistance in hypertension restores the vascular actions of insulin, we studied the long-term effects of metformin on the contractile responses of isolated aortas from control and insulin-resistant, hyperinsulinaemic fructose-hypertensive rats in the presence and absence of insulin.

Design and methods: Sprague Dawley rats were divided into control, control metformin-treated, fructose and fructose metformin-treated groups (n = 8 per group). The treated groups received metformin (500 mg/kg per day for 6 weeks), following which isometric responses to noradrenaline (NA) and angiotensin II (A-II) were examined in thoracic aortas in the presence and absence of insulin (100 mU/ml for 2 h) using isolated organ-bath apparatus. In addition, endothelium-dependent and independent vascular responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were also studied.

Results: Metformin treatment prevented the development of fructose-induced insulin resistance, hyperinsulinaemia and hypertension. Insulin attenuated the contractile responses to NA and A-II in control rat aortas; however, blood vessels from untreated fructose rats were refractory to insulin-induced vasodilation. Strikingly, long-term metformin treatment restored the vasodepressor actions of insulin in fructose rats. Metformin did not affect the contractile responses to NA or A-II in either control or fructose rats. In addition, metformin treatment restored ACh-induced endothelium-dependent vasorelaxation in aortas from fructose rats without affecting SNP-induced relaxation.

Conclusions: These data show, for the first time, that long-term metformin treatment corrects vascular insulin resistance and improves endothelium-dependent vasorelaxation in hypertension. These effects appear to be secondary to metformin-induced improvements in metabolic derangements (versus a direct vascular action of metformin). Improving the vascular effects of insulin may serve to decrease peripheral tone, attenuate blood pressure and improve insulin sensitivity.

PubMed Disclaimer

Publication types