Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov;26(3):336-40.
doi: 10.1038/81649.

Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes

Affiliations

Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes

J P Silva et al. Nat Genet. 2000 Nov.

Abstract

Mitochondrial dysfunction is an important contributor to human pathology and it is estimated that mutations of mitochondrial DNA (mtDNA) cause approximately 0.5-1% of all types of diabetes mellitus. We have generated a mouse model for mitochondrial diabetes by tissue-specific disruption of the nuclear gene encoding mitochondrial transcription factor A (Tfam, previously mtTFA; ref. 7) in pancreatic beta-cells. This transcriptional activator is imported to mitochondria, where it is essential for mtDNA expression and maintenance. The Tfam-mutant mice developed diabetes from the age of approximately 5 weeks and displayed severe mtDNA depletion, deficient oxidative phosphorylation and abnormal appearing mitochondria in islets at the ages of 7-9 weeks. We performed physiological studies of beta-cell stimulus-secretion coupling in islets isolated from 7-9-week-old mutant mice and found reduced hyperpolarization of the mitochondrial membrane potential, impaired Ca(2+)-signalling and lowered insulin release in response to glucose stimulation. We observed reduced beta-cell mass in older mutants. Our findings identify two phases in the pathogenesis of mitochondrial diabetes; mutant beta-cells initially display reduced stimulus-secretion coupling, later followed by beta-cell loss. This animal model reproduces the beta-cell pathology of human mitochondrial diabetes and provides genetic evidence for a critical role of the respiratory chain in insulin secretion.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources