Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov;219(3):353-67.
doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1059>3.0.CO;2-#.

Glypican-4 is an FGF2-binding heparan sulfate proteoglycan expressed in neural precursor cells

Affiliations
Free article

Glypican-4 is an FGF2-binding heparan sulfate proteoglycan expressed in neural precursor cells

K Hagihara et al. Dev Dyn. 2000 Nov.
Free article

Abstract

FGF2 is a crucial mitogen for neural precursor cells in the developing cerebral cortex. Heparan sulfate proteoglycans (HSPGs) are thought to play a role in cortical neurogenesis by regulating the action of FGF2 on neural precursor cells. In this article, we present data indicating that glypican-4 (K-glypican), a GPI-anchored cell surface HSPG, is involved in these processes. In the developing mouse brain, glypican-4 mRNA is expressed predominantly in the ventricular zone of the telencephalon. Neither the outer layers of the telencephalic wall nor the ventricular zone of other parts of the developing brain express significant levels of glypican-4, with the exception of the ventricular zone of the tectum. In cultures of E13 rat cortical precursor cells, glypican-4 is expressed in cells immunoreactive for nestin and the D1.1 antigen, markers of neural precursor cells. Glypican-4 expression was not detected in early postmitotic or fully differentiated neurons. Recombinant glypican-4 produced in immortalized neural precursor cells binds FGF2 through its heparan sulfate chains and suppressed the mitogenic effect of FGF2 on E13 cortical precursor cells. The spatiotemporal expression pattern of glypican-4 in the developing cerebral wall significantly overlaps with that of FGF2. These results suggest that glypican-4 plays a critical role in the regulation of FGF2 action during cortical neurogenesis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources