Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Nov;106(9):1071-5.
doi: 10.1172/JCI11459.

Therapeutic applications of transcription factor decoy oligonucleotides

Affiliations
Review

Therapeutic applications of transcription factor decoy oligonucleotides

M J Mann et al. J Clin Invest. 2000 Nov.
No abstract available

PubMed Disclaimer

Figures

Figure 1
Figure 1
The decoy oligonucleotide approach to block the function of the transcription factor E2F. In quiescent cells (a), the factor is sequestered in a protein complex. During cell cycle progression (b), the complex is phosphorylated and free E2F is released. The factor binds to its consensus binding sequence in the promoter regions of multiple cell cycle regulatory genes. The introduction into the nucleus of decoy oligonucleotides that bear the consensus binding sequence (c) prevents interaction of the factor with its promoter targets, thus inhibiting the upregulation of cell cycle genes and blocking proliferation.
Figure 2
Figure 2
Vein grafts are initially thin-walled vessels that must undergo wall thickening to resist increased stress in the arterial circulation. The neointimal hyperplasia that produces this thickening, however, involves the proliferation of activated smooth muscle cells that create a substrate for accelerated atherosclerosis and subsequent graft occlusion. Blocking neointimal hyperplasia, as we have done using an E2F decoy oligonucleotide, induces an adaptive hypertrophic thickening of the medial layer of the vessel, yielding hemodynamic stability without increased susceptibility to atherosclerotic disease.
Figure 3
Figure 3
Primary vein graft patency with or without intraoperative treatment of the grafts with E2F decoy oligonucleotides. In a small cohort of patients at high risk for primary graft failure, primary patency at 12 months was improved with E2F decoy blockade of cell cycle gene expression and neointimal hyperplasia (P = 0.04). The absence of ongoing failures beyond the first 6 months in the treated group may suggest a long-term stabilization of graft wall architecture via this one-time, intraoperative gene manipulation approach. (From ref. 11).

References

    1. Bielinska A, Shivdasani RA, Zhang LQ, Nabel GJ. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science. 1990;250:997–1000. - PubMed
    1. Morishita R, et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci USA. 1995;92:5855–5859. - PMC - PubMed
    1. Gaubatz S, Wood JG, Livingston DM. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc Natl Acad Sci USA. 1998;95:9190–9195. - PMC - PubMed
    1. Yamada T, et al. In vivo identification of a negative regulatory element in the mouse renin gene using direct gene transfer. J Clin Invest. 1995;96:1230–1237. - PMC - PubMed
    1. Tomita S, et al. Transcription factor decoy to study the molecular mechanism of negative regulation of renin gene expression in the liver in vivo. Circ Res. 1999;84:1059–1066. - PubMed

Publication types