Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Nov 15;165(10):5509-17.
doi: 10.4049/jimmunol.165.10.5509.

Eosinophil major basic protein-1 does not contribute to allergen-induced airway pathologies in mouse models of asthma

Affiliations
Comparative Study

Eosinophil major basic protein-1 does not contribute to allergen-induced airway pathologies in mouse models of asthma

K L Denzler et al. J Immunol. .

Abstract

The relationship between eosinophils and the development of Ag-induced pulmonary pathologies, including airway hyper-responsiveness, was investigated using mice deficient for the secondary granule component, major basic protein-1 (mMBP-1). The loss of mMBP-1 had no effect on OVA-induced airway histopathologies or inflammatory cell recruitment. Lung function measurements of knockout mice demonstrated a generalized hyporeactivity to methacholine-induced airflow changes (relative to wild type); however, this baseline phenotype was observable only with methacholine; no relative airflow changes were observed in response to another nonspecific stimulus (serotonin). Moreover, OVA sensitization/aerosol challenge of wild-type and mMBP-1(-/-) mice resulted in identical dose-response changes to either methacholine or serotonin. Thus, the airway hyper-responsiveness in murine models of asthma occurs in the absence of mMBP-1.

PubMed Disclaimer

Publication types

MeSH terms