Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Oct;24(2):139-45.
doi: 10.1046/j.1365-313x.2000.00844.x.

Differential expression and regulation of K(+) channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature

Affiliations
Free article
Comparative Study

Differential expression and regulation of K(+) channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature

C S Bauer et al. Plant J. 2000 Oct.
Free article

Abstract

Recently, two K(+) channel genes, ZMK1 and ZMK2, were isolated from maize coleoptiles. They are expressed in the cortex and vasculature, respectively. Expression in Xenopus oocytes characterized ZMK1 as an inwardly rectifying K(+) channel activated by external acidification, while ZMK2 mediates voltage-independent and proton-inhibited K(+) currents. In search of the related gene products in planta, we applied the patch-clamp technique to protoplasts isolated from the cortex and vasculature of Zea mays coleoptiles and mesocotyls. In the cortex, a 6-8 pS K(+) channel gave rise to inwardly rectifying K(+) currents. Like ZMK1, this channel was activated by apoplastic acidification. In contrast, protoplasts from vascular tissue expressing the sucrose transporter ZmSUT1 were dominated by largely voltage-independent K(+) currents with a single-channel conductance of 22 pS. The pronounced sensitivity to the extracellular protons Ca(2+), Cs(+) and Ba(2+) is reminiscent of ZMK2 properties in oocytes. Thus, the dominant K(+) channels in cortex and vasculature most likely represent the gene products of ZMK1 and ZMK2. Our studies on the ZMK2-like channels represent the first in planta analysis of a K+ channel that shares properties with the AKT3 K(+) channel family.

Keywords: K(+) channel, voltage-independent, proton block, maize coleoptile.

PubMed Disclaimer

Publication types

LinkOut - more resources