Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 9;276(6):4142-9.
doi: 10.1074/jbc.M006443200. Epub 2000 Nov 7.

Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1

Affiliations
Free article

Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1

U Kirchhefer et al. J Biol Chem. .
Free article

Abstract

Triadin 1 is a major transmembrane protein in cardiac junctional sarcoplasmic reticulum (SR), which forms a quaternary complex with the ryanodine receptor (Ca(2+) release channel), junctin, and calsequestrin. To better understand the role of triadin 1 in excitation-contraction coupling in the heart, we generated transgenic mice with targeted overexpression of triadin 1 to mouse atrium and ventricle, employing the alpha-myosin heavy chain promoter to drive protein expression. The protein was overexpressed 5-fold in mouse ventricles, and overexpression was accompanied by cardiac hypertrophy. The levels of two other junctional SR proteins, the ryanodine receptor and junctin, were reduced by 55% and 73%, respectively, in association with triadin 1 overexpression, whereas the levels of calsequestrin, the Ca(2+)-binding protein of junctional SR, and of phospholamban and SERCA2a, Ca(2+)-handling proteins of the free SR, were unchanged. Cardiac myocytes from triadin 1-overexpressing mice exhibited depressed contractility; Ca(2+) transients decayed at a slower rate, and cell shortening and relengthening were diminished. The extent of depression of cell shortening of triadin 1-overexpressing cardiomyocytes was rate-dependent, being more depressed under low stimulation frequencies (0.5 Hz), but reaching comparable levels at higher frequencies of stimulation (5 Hz). Spontaneously beating, isolated work-performing heart preparations overexpressing triadin 1 also relaxed at a slower rate than control hearts, and failed to adapt to increased afterload appropriately. The fast time inactivation constant, tau(1), of the l-type Ca(2+) channel was prolonged in transgenic cardiomyocytes. Our results provide evidence for the coordinated regulation of junctional SR protein expression in heart independent of free SR protein expression, and furthermore suggest an important role for triadin 1 in regulating the contractile properties of the heart during excitation-contraction coupling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources