Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 15;62(4):503-9.
doi: 10.1002/1097-4547(20001115)62:4<503::AID-JNR4>3.0.CO;2-A.

Dehydroepiandrosterone inhibits microglial nitric oxide production in a stimulus-specific manner

Affiliations

Dehydroepiandrosterone inhibits microglial nitric oxide production in a stimulus-specific manner

S W Barger et al. J Neurosci Res. .

Abstract

Dehydroepiandrosterone (DHEA) is a steroid that circulates in abundance in the form of a sulfated reserve (DHEA-S). The levels of DHEA decline with age and further in age-related neuropathologies, including Alzheimer disease. Because of their reported anti-inflammatory effects, we tested the actions of these compounds on microglia. At concentrations of 3(-9) to 1(-6) M, DHEA and DHEA-S inhibited the production of nitrite and morphological changes stimulated by lipopolysaccharide. DHEA and DHEA-S also inhibited LPS induction of iNOS protein, but neither inhibited LPS-induced iNOS mRNA or the activation of NF-kappaB. These data suggest that the hormone regulates nitrite production through a post-transcriptional mechanism. Interestingly, microglial nitrite production in response to a secreted form of the beta-amyloid precursor protein (sAPP) was unaffected by DHEA. Another Alzheimer-related factor, amyloid beta-peptide, also stimulated microglial nitrite production but in a manner dependent on the co-stimulus interferon-gamma. DHEA was found to inhibit only the interferon-gamma component of the microglial response. These data add to a growing body of evidence for differences in the profiles of mononuclear phagocytes activated by distinct stimuli.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources