Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 15;62(4):574-84.
doi: 10.1002/1097-4547(20001115)62:4<574::AID-JNR12>3.0.CO;2-0.

Cellular physiology of the neonatal rat cerebral cortex: intrinsic membrane properties, sodium and calcium currents

Affiliations

Cellular physiology of the neonatal rat cerebral cortex: intrinsic membrane properties, sodium and calcium currents

H J Luhmann et al. J Neurosci Res. .

Abstract

The cellular physiology of the primary somatosensory cortex was studied in postnatal day (P) 0 to P5 rats using whole-cell patch-clamp recordings. Visually identified Cajal-Retzius, subplate, bifurcated pyramidal, and immature, putatively migrating neurons showed resting membrane potentials between -44 and -50 mV and TTX-sensitive action potentials. Immature pyramidal neurons with the smallest surface area ( approximately 1,600 microm(2)) revealed the largest input resistance ( approximately 1.8 GOmega), and subplate cells with the largest surface area ( approximately 6,200 microm(2)) showed an input resistance of approximately 1 GOmega. Ontogenetically older Cajal-Retzius and subplate cells revealed shorter and larger action potentials compared to bifurcated and immature pyramidal neurons. Whereas Cajal-Retzius and subplate cells responded to injection of depolarizing current pulses with a repetitive nonadapting and fast spiking firing pattern, immature pyramidal neurons showed strong adaptation. Subplate cells revealed the fastest action potentials, largest sodium current amplitude (-714 pA), and highest sodium current density (-38 microA/cm(2)), enabling these cells to transmit afferent activity faithfully to postsynaptic neurons. Whereas all cell types expressed a high-voltage-activated (HVA) calcium current, none of them showed a significant low-voltage-activated calcium current. The largest peak (-25.5 microA/cm(2)) and steady-state (-7.6 microA/cm(2)) HVA calcium current density could be observed in immature presumed migrating neurons. In contrast, Cajal-Retzius and subplate neurons showed a significantly lower peak (-4.9 microA/cm(2)) and steady-state (<-3.3 microA/cm(2)) HVA calcium current density. Whereas a large HVA calcium current may promote neuronal migration of immature neurons, low intracellular calcium levels may provoke apoptosis in Cajal-Retzius and subplate cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources